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ABSTRACT

(E,P)
Let

In this paper, we consider the following abstract problem. Let

be an ordered Banach space with cone P having a nonempty interior S.
X1,A2 € R, A1 < Az, a,pbepP, such that b - a e BP. Let the operator
K : [A1,A2] x {a,b]) + [a,b]

the second variable for fixed A € (X1,X2), strictly increasing with respect

Moreover, assume that a is the

be compact, strongly increasing with respect to

to the first variable for fixed u € [a,b].
only fixed point of K(A1,') and that b is the only fixed point of
K(Az,'). Congider the equation
(*)
Under the above assumptions, we prove that any closed connected subset of
solutions of (*) in [A1,A2] x [a,b] (X1,a) (12,b).
contains the maximal and the minimal solutions of (*), which are obtained by

Such a subset of solutions is shown to exist.

u = K(A,u) .

which meets and

monotone iterations.
Applications to a semilinear elliptic eigenvalue problem are studied.

AMS (MOS) Subject Classifications: Primary 47H07, Secondary 47H10, 35J65

Leray-Schauder degree, monotone iterations, nonlinear
functional analysis

Key Words:

Work Unit Number 1 (Applied Analysis)
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SIGNIFICANCE AND EXPLANATION

-~ Certain physical phenomena can be modelled by the nonlinear eigenvalue
problem /] .D)

/

«Au = Ag(°*,u) in §
(P)

u=0 on I'= 23Q .

' . Under minimal assumptions on the nonlinear term );9,/ which may be of interest

in some applications) the existence of solutions can be obtained by several

known methods. The purpose of this paper is to compare two such methods,
namely the continuation method due to Leray and Schauder as extended by

Rabinowitz, and the method of monotone iterations. Our results are then

applied to problem (P).

N
\
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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SOME REMARKS ON THE CONTINUATION METHOD OF
LERAY-SCHAUDER-RABINOWTIZ AND THE METHOD OF MONOTONE ITERATIONS

Philippe Clément*

1. _INTRODUCTION.

Let (Z,P) be an ordered Banach space, see [1, p, 627]. For a,beE, ac<b,
[a,b]l denotes the order-interval {u € Ela < u ¢ b},
Let X : (a,b) » [a,b] be a compact mapping, i.e. KX is continuous and the range
of K is relatively compact in [a,b].
since ([a,b] is closed and convex in E, it is a consequence of Schauder‘'s theorem,
that X possesses at least one fixed point in (a,b). If X is also increasing, i.e.
u € v implies K(u) € K(v), then the existence of a minimal (resp. maximal) fixed point
of X, which we denote by u (resp. @), is easily established by an iteration procedure

(1, p. 639].

(n)

ie1mx™a); a=12mx™w .

nee n»e

If we also assume that (E,P) is normal [1, p. 627] and that P has a nonempty interior
5, then (a,b] is a bounded set of E, with nonempty interior [(a’bl, provided that
a<<b, i.e. b-aeb.

The Leray-Schauder degree of I - K relative to [a}b], d4(I - K,(a%b]l), see for
example (6]}, is then well-defined, whenever K has no fixed point on the boundary of
fa,b] e.g. wvhen X maps ({a,b] into its interior. Note that this implies
(1.0) & << K(a) and K(b) << b .

Conversely if K satisfies (1.0), then a sufficient condition for X to map ([a,b) into
its interior is that, K is strongly increasing, i.e. u < v implies K(u) << K(v). We
shall assume X strongly increasing and satisfying (1.1). 4(I - X,(a;b]) is easily

computed by considering the compact homotopy:

*Partially supported by the Mathematics Department, Technische Hogeschool Delft,
The Netherlands.

Spongored by the United States Army under Contract No. DAAG29-80-C-0041.
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(1.1) H(t,u) 1= u - (1 = t)c - tk(u), t € [0,1],
ue [a,b], with c e [a,b)
Then, 4(I - K,[a%h)) = A(H(1,*),[a,b]) = A(H(t,*),[a,b]) = A(H(O,*),[asb]) = 1,
t e [0,1), Dby noting that the solutions (t,u) of
(1.2) H{t,u) =0, te [0,1], ue [aD)]
satisfy u € [ajb].

Since d(H(t,*),[a;b]) is constant and # 0, for t € [0,1], it follows from (6,
Corollaire 10, p. V - 16], that there exists a subset C of solutions of the equation
(1.2) which is connected in (0,1] x [a,b}] equipped with the product topology, and which
meets (0,c) and at least one point (1,;) where u is a fixed point of K. A natural
question arises, namely which fixed points u can be "reached by the homotopy® or more
precisely which fixed points W of K belong to the component of (0,¢) in

(0,1} x [a,b]l. In particular are (1,3), (1,u0) e C?

In section 2, we shall prove that if a € c < K(c) < &, then the component C of
(0,¢) in [0,1) x [a,b] meets [1,3) and that (t,u) €C, 0 < t < 1 implies u << u.
Similarly, ome could consider the homotopy ﬁkt,u) =9 = (1~ t)k(u) - tc, t € [0,1],

u e [a,bl. Then provided that u < K(c) < c ¢ b, then C, the component of (1,c)
meets (0,5) and (t,u) €C, 0 < t <1 implies 1 << u.

If 4 <1qQ and if there exist u,su, e [a,b] satisfying

u< u, < u, <d
(1.3)

K(u1) < LI < K(uz)

then, Amann [2) proved that there exists a third fixed point u such that u << u << a

satisfying u u, and u, 3 u. See [1, Theorem 14.2, p. 666]. Consider the homotopy:

u-(1-2¢t)a~2tx(u) teo,%]
(1.4) H(t,u) =

u-2(1=¢t)Ku - (2t - )b te[V,1]

u e [a,b), and define

8 1= {(t,u) e [0,7) x [a,b)|H{t,u) =0},

_______ . A Mt et aa A e Ao A e e A m e A~

‘-".u" .
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then, if C; is the component of (0,a) in S, we know by what preceeds that C,
contains (¥, ,u); similarly, C, the component of (1,b) in 8 contains ( 5,81 we
shall prove in section 2, that there exists a connected set C; in 8, which meets
(%), (%5,8) and at least a third point (¥, ,u) where u is a fixed point of K
satisfying u § u, u, § v,
These results are special cases of Theorem 2.1 where a general homotopy
(1.5) u=-x2u), Ae([A,\), ue (ab]
is considered. There K is a compact mapping, which is strongly increasing "in u" for
Ae (A1,k2) and strictly increasing "in A" for u e (a,b]. Then if a (resp. b) is
the only fixed point of x(l,,-) (resp. K(lz.')). we prove that C the component of
(l1,a) in 8 = {(A,u) e [X,,le x [a,bl|u = K(A,u)} meets (Xz,b), and contains all
maximal and minimal solutions of (1.5) for i e (li.lz). Thus Theorem (2.1) relates the
solutions of (1.5) obtained by applying the continuation method of Leray-Schauder-
Rabinowitz [6] and the solutions of (1.5) obtained by monotone iterations [(1].
In section 3, we give an application of the results of section 2 to a semilinear
elliptic problem:
-Mu = Mg(*,u) in RCR"
ua=20 in 98

where we refine some results of [3], [4].
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2. THE MAIN RESULT.

Throughout this section, (E,P) denotes an ordered Banach space with cone P having
a nonempty interior ;, {We do not assume (E,P) to be normal), a,b € E such that
a << b, and 11,12 € R such that A1 < 4\2.

K : u,,le x {a,b] + [a,b] is continuous and has a relatively compact range in
[a,b] (where [X1,A2] x [a,b] is equipped with the product topology). S denotes the set
of solutions of
(2.1) us=RKAu (Au)e [A1,X2] x {a,b] .

For A e (X,,Azl, 4(A) (resp. u(l)) denotes the maximal (resp. minimal) fixed

point of K(A,*) in [a,b), which are known to exist. We have

Theorem 2.1, let K defined as above satisfy the following assumptions;

(1) Por each A e u1,x2), K(A,*) is strongly increasing.

(i1) Por each u e (a,b], X(°,u) 4is strictly increasing
(A < u =K(A,u) < K(p,u)).

(1i1), ;, a (resp. b) is the only fixed point of K(A,*) (resp. K(A,,°)). Then
(1) ¢ the component of (X1,a) in 5 meets (Xz,b).

{2) Any closed connected set D in S which meets (A1 a) and (Xz,b) containsg
all maximal 4(A) and minimal U(A) fixed points of K(A,*), Ae (A1,A2). Moreover, for

each ) e (l‘.lz), S

(2.2) WA) = sup (W) = lim w(w . .
X1 <ucA A R
2
(2.3) G(A) = 4inf  d(w) = lim &(w) . ]
ACuc), 112, 1
2 -
(3) 1If for some A € (A1,A2), a(}) < 4(}), and if there exist Uy, u, satisfying: -.«-«
(2.4) ud <ug <u, <ah . -
(2.5) u, > K(l,u‘)r u, < K(X,uz) . - _
Then, any closed connected set D in S which meets (A, ,a] and (A,b] contains a : . 1
point (X,u] where u § uge v, ¥ u. -'“‘1!
i
N
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Remark 1: If K satisfies (i), (ii) and (iii),: a is the only fixed point of K(l‘,'),
but b is not the only fixed point of K{ Az,°), then one can apply the theorem on

[Ae2,) x [a,&(xzn. provided that a << i(),). Indeed, u €u(),) implies

K(Au) € x(x,a(xz)) < K(A,,u(A)) = a(}X)), for Ae [A,)\]. Then u©(),) plays the role

of b. Similarly, when a is not the only fixed point of K( A1,') but b is for

Remark 2: When X satisfies (1), (ii) and (iii), and a ¢ 6(12) < b, then from what
preceeds we know that there is a connected set C; in s N [X1 ,12] x [a.'u(kz)] which
meets (A ,a) and (lz,i'x( A))e A priori the component C of [A,a] in S may not be
contained in [A,,A,] x {a,a(2,)). The following lemma, which will be useful in the proof

of Theorem 2.1, shows that (A,u) € C implies u € [a,u( '\2”'

Lemma 2.2. Let K be as in Theorem 2.1 satisfying (i ii), and (iv): c is a fixed

point of K(1,,*) and d is a fixed point of K(A),°) such that ¢ < d.
Let C_, denote the component of (A,,c) in 8 N [A,A] x [a,bl. Then for each

(A,u) e C,

(2.4) u << 4 holds.
Similarly, let C, denote the component of (Az,d) in s 0 (A,\) x [a,b]l. Then for ’ ‘1
each (A,u) e c, S
(2.5) c << u holds. ;
Proof of Lemma 2.2, P i
Let A := {A,u) e cclu € d}. Then A % ¢, since (X1 /) € A, moreover A is closed in «'i
C.,» For (A,u) @ A, we have u < d. Otherwise u = K(A,u) < K( Az,u) <K(A,,a, =4, a ‘:‘
contradiction. Thus u = K(A,u) << K({A,d) < x(lz,d) = d and u << 4. This and the fact ( 'i
that A < Az for {(A,u) €A imply that A is open in C.e Thus A = C, and (2.4) -.v‘.
holds. The second part of the lemma is proved by exchanging the role of ;'._1
(A;,c) and \Xz,d) and reversing the inequalities. "::' :
,:‘ Remark, The proof of Lemma 2.2 is similar to the proof of part 2 of Theorem 1 of [4]. fA .-
. -.__,z,.:
Sy
")
i s L

- ®
: -
1

'

Y




MY S
v
P

2
i

vl
«

atéi s s

FURRRAIEY .
. .-‘-'t'n‘ .'

0
A
:

Proof of Theorem 2.1.

We first prove assertion (2). Let le (X‘.lz). We denote by Dy the component of
(A,a) in DN ((11,'X) x [a,bl). We claim that

a) sup A=}

(l.u)eox
b) (A,u) € DY implies u < aly.

Pirst we prove a). Assume that sup A < %. Then, there exists € (kl +A)  such that
(A,u)epg

by N ({4} x (a,b]) = ¢. Set A :=pDn ({u} x (a,bl). A # ¢ since
?roj“vleb - [X‘,le.
If we define C 1= D N ([} +¥] % [a,b]) then C is a compact metric space, and
A, DX are closed disjoint subsets of C. There is not connected set D meeting both
A and Dy, othervise Dy 2C by using the maximality of Dy and Dj3OAE Y a
contradiction. Thus by a lemma of point set topology, see for instance [6, Lemma 1.9],
there are closed disjoint subsets of C, C, and C, such that Dy C c‘, AC (:2 and

C=¢ Ucz' Then define C

1 3 " {(u,u) e Dlu > X}, C, ucy is closed

c‘l n (c2 V] ca) = ¢ and D=C, U (Cy U C3), contradicting the connectedness of D.

Thus, sup A = 2. Next we prove b). Observe that b) is a consequence of Lemma 2.2,
(A,u)ebi

with A, replaced by X, ¢ replaced by a and d replaced by u(l). Note that

a << u(X), since a = k(A ,a) <x(Xa) ¢k(La(A) = 3D, Then x(Xa) << k(Lu(A)
and a < X(X,a) << x(3,u(X)) = a(X). This proves b). By using a), b) and the fact that
the range of K is relatively compact in [a,b], there exist ue [a,b] and a sequence

(Xn,un) € Dy such that rl‘i: An =1 and :.‘t: u, = U. By using the continuity of K,

u = K(X,u) and thus u(}) ¢ u. But from b) it follows that u < u(l), thus u = u(d.
Since (A ,u ) e D, (3,3(3)) e p. For the u, we could have chosen u( A« since for
each sequence u( un) such that un +3 as n» =, there exists a subsequence which
converges to (1,i(1)) we have also proven that 1lim &(A) = sup 4(M) = G(}). The second
part of the assertion of (2) is proven in a "dual” x::shion. b

Next we prove assertion (1). From (iii) a,b and the compactness of K it follows that

lim (A) = a and 1lim &(A) = b. Thus, since b - a e l‘;, there are aé€ (0, 1/2) and
AH1 sz




ceto,lz-l) such that 4()A) < a + a(b - a) for Ae(x1,x1+c) and

1
W(\) >b~-a(b-a) for A e (Xz - c,lz). Hence ®(A) << u(u) for A e (A‘,A1 + ¢) and

ne “2 - t,lz). We claim that for each i e (l‘,l1 + € and e (\2 - ngz). there is
a maximal connected set C, u in 8 n ({A,u) x [a,b)) which meets (A,8(1)) and
’

t

K(t,a) << A(t) € Q(t) << x(t,b), for t € [A,y]l. Then O = U {t} x0_ is an open
telA,u -t
subset of [(A,u] x [a,b] containing no solution of (2.1) on its boundary (as a subset of

(1,8(w))e Por t e (A,ul, define O, := [K(t,a)’,R(t,b)]. Note that

[A,u) x [a,b]). We know that &(I - K(t,°),ot) =1, te (\ul. By [7, Corollaire 10,
V - 6], there exists a component Cy " of 8 N{([A 4 x (a,bl]) which meets
.

{A} x S, and {u} x 8 where 8_: = {ue [a,b]|(t,u) eSS}, te [A,,Azl. Next we prove

u t
that C, , contains (A\,4(2)) and (u,a(u)). We denote by c any element of

{a} xsync, . Note that C,, the component of (\.c) in 8 N ([Aul X (a,b]) is

- Cy v Next we define Ec' the component of (A,c) in 8 N ([A,u) x [a,b]) and as in
’

the proof of part (2) one proves that sup t_ = M, and by applying the lemma 2.2, with
(t,u)ec

A;/A,,4 and D replaced by A,u,u(p) and C., noting that c < 4(1) <« AW, we
obtain u << w(yp) for (t,u) € Ec. Then one chooses a sequence (tn,un) + (w,u) such

that t Y ou ¢ u and one proves as in part (2) that 2 = u(u). Thus (tl.:n( w)

belongs to the closure of Ec and hence to cc = cA v Similarly one proves that
(4
(2,8(0) e c, y Ve conclude the proof of assertion (1), by noting that
’

U c,
Ae(x1,x1+e) ‘

ve( xz'c: Az)

is also connected and that its closure in “‘l'le x [a,b] satisfies

the requirements of assertion (1).

Finally we prove assertion (3). We define O, := [} ) x [a:u1] and
o2 1= ('X,lzl x [uzzb]. 0y and 0, are open in [x1,A2] x [a,b)e Let A e (31,A), then

(2,4(2)) eo Indeed,

1.
(2.7) a << 9(A) = K(A,A(A) < x(},0(0)) « x('i,u1) <uy .

Similarly, let u e (X,xz), then (u,8(u)) € O_.. We know that (A,u(A)) € D and

2.
(u,4(n)) € D. Since O, and 0, are disjoint and D is closed and connected in

7=
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[11,A21 x [a,b], there exists 8 cloend and connected in [X1,le x [a,b] such that
D < of no
a) D O1 02

b) D meets 30, ana 30,, where of- (1A 4] % (a,B]N\0,, i=1,2 and %, is

the boundary of 0; as subset of [A1,12] x [a,b), 1 =1,2.

b~ DRRCADMNSIRNG &2 R

.,v...
(N MaU B S
[ ST Rt

;
E
P.,

%0, = [A1,'X) x dla,u,] U A} = la,u,]

%0, = (X,x21 x 3lu,,b} U {a} x lu,,b]
DN, = {(A1,a)} U B,

N -
D ao2 {(xz,b)}ula2

where

B, = {tA,uyeDd|lA=3 ue [a,u1]}

B, := {A,u)eD|A= A ue [uz,b]} .

Note that the component of 0: N0, which contains (A1 (a) is {(X1,a) }. similarly for

c
2
(Xz,b). Thus D N B, ¢ ¢, and DN Bz # ¢. We want to prove that

D N ({3} x ([a,u,)%v fu,,01°)) # ¢, where la,u,1 = (a,bl\la,u,], & =1,2. Define

Ay o= LA x [au,] U (M) % (u,ip) €

A, = [A l-x] x [a:“ ]C v} [-Apx] x [“ ob] ';.'
2 1 1 2 2 e
Then A,, A, are closed subsets of [A1,A2] x {a,b), and (DN A1) U mn A, = D. . R
DN A, *# ¢, since ¢ ¢# D N B, C D n A,. Similarly Dn A, # ¢. Thus )

D ﬂA1 N Az *t ¢

by using the connectedness of 5. From the observation that (t,u) € 5 and ..,'".,‘ <
t < -A. ue [a,u1] (resp. t » i, [uz,b]) implies u € [a:u1l (resp. [uz‘:b]), it
-
follows that D NA, NA, =D n ({X} x ((uz‘;blc n [a‘,’u11°)). Thus there is (X,u) e D C D :
|
such that u £ u, and u, gu. If u < ug. then u < "-11' Indeed u ¢ u, implies . . 1
= K(T\,\-x) < K(X,u") < ug. Thus u satisfies u [ u, and u, K 4. This completes the - “7
proof of the assertion (3) and of the Theorem 2.1. .‘-;]
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3. AN EXAMPLE.

We consider the nonlinear eigenvalue problem:

-8u = Ag{*,u) in @
(P)

u=90 on T = 3

where 1 is a bounded domain of RN with smooth boundary T.

g : & xR+ R is continuous and g'u exists and is continuous. A solution of (P) is
a part (A,u) @ R x wz"’(m with p > N satisfying (P). Let u be a positive,
superharmonic, bounded, lower-gsemicontinuous function on £ such that g(x,u(x)) = 0 a.e.
in Q and such that g(x,u) >0 for 0 €u < \.x(x), x e Q. It was shown in (4], that
if S denotes the set of solutions of (P) in R x wz’P equipped with the R x c1
topology, and if C is the component of S containing (0,0), then C satisfies:

1) (A,u) € C\(0,0) implies u is positive, superharmonic and u(x) < u(x), x € @

2) for every A > 0, C has a minimal solution wu(A).

3) umh’:m-alp-o p <=

For A> :,.. we shall s:y that u(A) 4s the minimal (resp. maximal) solution of (P) in
{o,ul if (A,8(A)) (resp. (A,4(A))) 1is a solution of (P} and for any solution (A,u)
satisfying 0 < u(x) € u(x), xe &, u(x) » W(A(x), xe q {resp. u(x) € &(A)(x),

x e Q).

The aim of this section ia to prove the following:
Theorem 3.3. C above defined containg for each A > 0 the minimal and the maximal
solutions in [0,\-1].
Proof. a} C contains the minimal solution u(l) for each A> 0. Let A> 0 and
w(l) > 0 be such that (3.,1) w(}) + Agu(x,u) >0 for Ae [0,}], and for

0 €ucg t-:(x), x € . Then we rewrite (P) as

-8y + w(Xu = w(Xu + Mg(e,u) in R

{(P*)}
u=0 on T

(P') is then equivalent with
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i (") u = K(A,u)

n ueE:= {veC'(a)lv-O on T}

equipped with the c1 norm, and

< (3.2) K(Au)(x) 1= [ G tx,y) w(Duly) + dgly,uly)))dy

Q

’ where Gw(.") denotes the Green function relative to - + w(lA)u on £ with Dirichlet

boundary conditions.

Note that by (3.2) K is defined on R X I..( 1) and takes its values in E. In E

we introduce the cone

A P := {ue Elu(x) >0, x e Q)

[ —

- -y wer ¥
Y s+ AP AR
vA".',,lll .

° SRR
of positive solutions; it is standard that P has a nonempty interior P. Next we define

ad) = k(0.

a()) satisfies | -M(d) + wiDHu(h = wiha @
ad) =0 s

'b:
.

then u(X) e P and u(A) < u in 8 By our choice of w(}), this implies that T

~ ~ ~ ~ j
k(X,u(X)) < utl). since k(X,°) is increasing in u, K(},°) : [0,u(})] + [0,u(N]) and
thus (P) has a minimal solution u(}). Note that u(}) e P. By our choice of “‘".-Tf‘!

w(l), u + K(Au) is strongly increasing for A e (0,3}, increasing for A= 0, and

K()2,0) >0 for Ae (0,3) and K(Au(N)) €u(d) for re (0,}). Moreover K(°*u) is

strictly increasing in A for each u e [0,u(X)]. Thus, X : [0,A) x [0,4(D)] + [0,0(N)]

satisfies the assumptions of Theorem 2.1. There exists a connected set D of solutions in
R xC' which meets (0,0) and (X,i(X)). Since DCC, C contains (Xu(%)) and

obviously, w(X) = u(d).

b) € contains the maximal solution @(A) in [0,u] for each A > 0. Let A>o0 -@-

and w(l) > 0 be chosen as in a). We denote by S - fue (0,u)[(X,u) is a solution
of (P) «+ K being defined as in a), we know that u € $3 implies u <€ k(X = 3(1), and
u>0. Thus 8, € [0;u(X)] = [0;K(X,u)]. Define A := R+ n, newW. Then, since

;x(ln) < ﬁ(ln”), nemn (easily verified), we have K(X,ﬁ(-xn)) < K(i,\'x(ln”)). Moreover

K(i,\-x) = lim K(X,ﬁ( Xn)) follows from statement 3) before Theorem 3.1. We claim that
n»e

i aiat 2 RS o cacR R e aesa s &
[ 3 .
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had o
(.k(X,w)] = U [0,K(X,(A ))]. Indeed let v e [0,K(,)]. By definition, there is

n=1 °
@> 0 such that K(1,u) ~ v » ae where e is an element of P. Moreover
k(3,u) = lim k(X,u( ln)) in c! implies the existence of a sequence {Bn_} with

ne*>s
lim 8 = 0 such that
nee P
K(,u) - x(‘x,u(xn)) <Be new.

Thus K(i,\'x(ln)) -v (a- Bn)e, NneN and there are N e W and c¢ > 0, such that

x('i.\'-()“)) -v>ce.

° - -
Thus v e [0,k(},8(A))]} C v (0,k(X;8(A ))]. Hence s3c v (0,k(%,2(A ))] Next we
n=1 » n=1 »
observe that § A is compact in c‘. Hence there is m € N, such that

n ° v
sy ¢ v [0,k(RaA ] c [o,x(RaAn .
n=1 n "

Note that v := K(A,ul Xm)) satisfies
-&v + w(l)v = w(X)G(X-) + 2g¢ -,ﬁ(x_n in @

vs=0 on I.

and u( Xm) satisfies
{""‘”‘m’ + (DB = whE(A) + Agle,(A)) in @

ﬁ(xm)-o on I.

Since lm > % and q(’,ﬁ(lm)) > 0, we have
-a(v - BA)) + wili(v - 8(A)) €0 in @

;-G(Xm)-o on T,

Thus v < 9(A) and
m

5 € [o,ﬁ(xn)] .

Next, choosing w( Xu) > 0 such that
wH.) + Aq“(x,u) >0 for Ae [o,A_] ’

0 €u ¢« ;(x), x € §, one defines K as in a) and verifies that with this choice of
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w, K satisfies the assumptions of Theorem 2.1 on [o,Am] x [O,E(Am)]. Then, there is a

connected set D of solutions of (P) in R X c1 which contains the maximal solution

(%) in [0, A ). But since §5C [o.\'x(xm)l, &(1) is the maximal solution in

[0,\-11. Since DC C, C contains the maximal solution @&(A) of (P) in (0,u]l. This

- v
" Dy

. .

i completes the proof of Theorem 3.1. .
®

b Remark 1. It is also a consequence of the proof that if we denote by C A the component of %‘*ﬁ

E‘:: solutions of (P) in [0,A) x c1 which contains (0,0), then C= U Cye P i

: o R

Remark 2. In the “bifurcation cage", i.e., when g satisfies g(x,0) = 0, x € Q but

;-

gu(x,O) >0, x€@, then a similar analysis shows that C = U cl when C is the
DA
1

component of positive solutions "emanating"™ from (X, ,0), bifurcation point. Then for

A> X1, C contains all maximal solutions in [o,\';]. Note that in this case the minimal

solution in [0,\-1] is 0, but it is shown in (3], {4], that C possesses a minimal

solution for each A > A".
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